您好,欢迎访问深圳市恒兴隆机电有限公司网站!

全国热线:15207556535  工作时间:08:00-18:00

新闻中心
全国服务热线
0755-27485299
二维码
深圳市恒兴隆机电有限公司
电话:0755-27485299
手机: 15207556535
邮箱:1540628041@qq.com
地址:广东省深圳市宝安区松岗朗下第一工业区葫芦路8号
当前位置:首页 > 新闻动态 > 行业动态

电主轴升温都有哪些抑制措施?

发布时间:2020-07-13 18:20:37


  电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术。高速数控机床主传动系统取消了带轮传动和齿轮传动。机床主轴由内装式电动机直接驱动,从而把机床主传动链的长度缩短为零,实现了机床的“零传动”。这种主轴电动机与机床主轴“合二为一”的传动结构形式,使主轴部件从机床的传动系统和整体结构中相对独立出来,因此可做成“主轴单元”,俗称“电主轴”。

  电主轴温升的抑制措施:

  一、减小轴承发热量的措施

  (1)适当减小轴承滚珠直径

  减小滚珠直径可以减小离心力,从而减小摩擦力矩。但是,滚珠直径的减小应以不过多削弱轴承的刚度为限。一般高速精密滚动轴承的滚珠直径约为标准系列滚珠轴承滚珠直径的70% ,而且做成小直径密珠的结构形式,通过增加轴承的滚珠数和滚珠与内外套圈的接触点,提高滚珠轴承的刚度。

  (2)采用新材料

  陶瓷球轴承与钢质角接触球轴承相比,在高速回转时,滚珠与滚道间的滚动和滑动摩擦减小,发热量降低。比如陶瓷球轴承与钢质角接触球轴承相比的主要优点有:

  1、质量轻。材料密度仅为3. 218 × 103 kg /m3,只相当于钢球的40%。在高速回转时,滚动体的离心力和陀螺力矩可显著减小从而接触应力减小,摩擦功耗下降,发热量降低。

  2、线膨胀系数小。α = 3. 2 × 10 - 6 /℃,约为钢球的25% ,使得在不同温升的条件下,球与内外环的配合间隙变化小,提高了轴承工作的可靠性,并减小了温升导致的轴承轴向位移,也使得预加载荷变化小。

  二、电主轴单元发热的解决方法

  电主轴单元异常发热后如何将热量尽快带走,从而有效控制温升。

  (1)主轴轴承的润滑冷却措施———油气润滑系统

  油气润滑是将微量的润滑油均匀、连续地混入压缩空气流,再把它喷入要润滑的摩擦副内的一种润滑方法。它除了具有很好的润滑性能之外,还有极强的冷却效果。虽油气润滑系统比较昂贵,但对于高精密加工中心来说,一套油气润滑系统不至于将产品成本提高很多。

  油气润滑在加工中心中应用,应注意以下事项:

  ①喷嘴距滚动轴承端面的距离可在3 ~ 25 mm 之间;

  ②在轴承腔壁上需开设排气孔,以便流通;

  ③油气润滑系统的用油量极少,大约1 mL /h;

  ④油气润滑系统的含油量:采用油气润滑时影响轴承温升的因素之一是供油量。供油量决定着油气两者混合流中的含油量,给定速度下的轴承温升与该含油量有关,初始阶段轴承温升随含油量增加而迅速下降,而后其影响减弱,当含油量增加到某一数值后温升缓慢增加,继而急剧上升,因而油气两者的混合流中的含油量达到一个最佳值,才能既保证轴承的润滑充足又保证轴承的强力冷却。为此,油气润滑系统参数确定为: 空气压力为0. 4MPa,空气流量为( 3. 3 ~ 6. 7) × 10 - 4 m3 /s,润滑油运动粘度为32 mm2 /s,润滑油流量约为( 0. 28 ~ 0. 83) ×10 - 10 m3 /s,调整润滑油流量取得最佳含油量;

  ⑤油气润滑系统供油的均匀性:采用油气润滑时影响轴承温升的因素之二是供油的均匀性。决定供油均匀性的最主要参数是供油频率。为了获得合适的供油量,不能只降低供油频率,而是合理匹配活塞直径、冲程、供油频率( 2 ~ 8 min) ,取得最佳方案,获得理想的供油量。轴承润滑方式的选择与轴承的转速、负荷、许用温升及轴承类型有关,一般根据速度因数dm·n 值选择。

  其中: dm为轴承中径( mm) : n 为工作转速( r /min) 。采用油气润滑系统来解决高速电主轴中陶瓷球轴承的润滑与冷却问题。

  油气润滑系统的基本原理是,利用具有一定压力的压缩空气和由定量分配器每隔一定时间定量输出微量的润滑油,在一定长度的管道中混合,通过压缩空气在管道中的流动,带动润滑油沿管道内壁不断地流动,把油气混合物输送到安装于轴承近处的喷嘴( 孔径1mm 中) ,经喷嘴射向内圈和滚动体的接触点实现润滑和冷却,达到“最佳供油量”和“压缩空气进行冷却”。

  油气润滑与油雾润滑的主要区别在于供给轴承的润滑油未被雾化,而是以油粒状被压缩空气吹入轴承,向大气中排放的仅是空气,因此对环境没有污染。具有一定压力的润滑油在接触点除润滑外还有带走热量和密封的作用。由于油滴是喷射而出,故可穿透在高速运转时由于离心力的作用而在轴承周围形成的空气涡流,实现润滑轴承的目的。油气润滑用大量的压缩空气来冷却轴承,使得轴承的温升比用油雾润滑时要低很多。实验表明,使用油气润滑的轴承温升可比使用脂润滑时降低5 ~ 80 ℃,比油雾润滑降低9 ~ 160℃,随着dm·n 值的增大,降温的效果更明显。

  轴承润滑的目的是减少轴承内部摩擦及磨损,防止烧粘,延长疲劳寿命,排出摩擦热,冷却。传统的滚动轴承润滑方法,如油浴润滑法、油杯润滑法、飞溅润滑法、循环润滑法和油雾润滑法等已均不能满足高速主轴轴承对润滑的要求,这是因为高速主轴轴承不仅对油的粘度有严格要求,而且对供油量也有着严格要求。为了获得最佳的润滑效果,供油量过多或过少都是有害的。而油气润滑系统则可以精确地控制各个摩擦点的润滑油量,可靠性极高,因而可在高速主轴轴承领域应用。

  (2)主轴轴承外环和内装式电动机的循环冷却措施———油—水热交换系统

  为了提高轴承外环的散热效果,在主轴设计中可采用主轴套筒螺旋槽冷却剂热交换系统,对主轴套筒进行强制冷却,从而带走主轴轴承外环异常产生的热量。选择加工各种高品质机床主轴认准钛浩机械,专业品质保障!因为专业,所以卓越!主轴套筒螺旋槽冷却剂热交换系统采用连续、大流量、冷却液对主轴套筒进行循环冷却,冷却液从主轴套筒上的入油口输入,通过主轴轴承外环主轴套筒上的螺旋槽,与主轴套筒进行充分的热交换,将主轴轴承外环产生的绝大部分热量转移到冷却液中,从主轴套筒上的出油口输出,然后流经热交换器,进行再一次热交换,将冷却液温度降到接近室温后,流回冷却箱,再经过压力泵增压输到入油口,从而实现循环冷却。

  主轴套筒螺旋槽冷却剂热交换系统在加工中心中应用,应考虑以下内容:

  ①冷却剂的选择: 常用的冷却剂有制冷剂、水、油及油水混合物,因产品具体情况选取,其中水冷降热比高、价格低廉、维护方便,深受广大用户青睐;

  ②冷却液或油或油水混合物冷却时介质压力约0. 4 MPa 为宜,介质流量约50 L /min 为宜。由于主轴电动机两端就是主轴轴承,电动机的发热会直接降低轴承的工作精度,如果主电动机的散热解决得不好,将会影响到机床工作的可靠性和稳定性。有限元分析表明,电主轴的定子和转子是电主轴的两大热源。另外,电动机高速运转条件下,有近1 /3 的电动机发热量是由电动机转子产生的,并且转子产生的绝大部分热量都通过转子与定子间的气隙传入定子中,只有少部分热量直接传入主轴和端盖上,其余2 /3的热量产生于电动机定子。

  转子散热条件差,又直接安装在主轴上,设计中应尽量减小电动机径向传热热阻,使转子的发热量尽可能多地通过气隙传到定子和壳体中去,并由冷却液带走。为了提高散热效果,保证电动机的绝缘安全,高速电主轴采用油一水热交换循环冷却系统。系统采用连续、大流量、冷却油对定子进行循环冷却,冷却油从主轴壳体上的入油口输入,通过定子冷却套上的螺旋槽,与电动机定子进行充分的热交换,将电动机产生的绝大部分热量转移到油中,从壳体的出油口输出,然后流经逆流式冷却交换器,与冷却水进行再一次热交换,将热油温度降到接近室温后,流回油箱,再经过压力泵增压输到入油口,从而实现循环冷却。根据主轴电动机的要求,冷却油的入口温度T 在10 ~ 40 ℃之间,温升不得超过10 ℃。

  现有的高速主轴主要是通过在主轴壳体内加冷却油,并不断地循环,把热量带走,来进行冷却。其基本的冷却路线是: 首先从主轴冷却油温控制器流出冷却油,经过在靠近前端盖的入水口,冷却油进入前端轴承的外围,对前端轴承进行冷却。接着流向主轴的定子和后端轴承进行冷却,最后从出水口流回主轴冷却油温控制器完成循环。

  (3)主轴轴承内环和内装式电动机转子的冷却措施———B 型内冷

  采用主轴套筒螺旋槽冷却液热交换系统,与不采用主轴套筒热交换系统冷却时轴承内环的温度也下降了一些,只有4 ~ 5 ℃,这表明主轴套筒热交换系统对轴承内环的散热效果不明显。要减少主轴轴承内环的温升和热影响,必须采用冷却剂对主轴中心孔冷却( B型内冷) ,提高主轴轴承内环的散热来实现。

  由此可见,机床设计师在进行高速加工中心电主轴单元设计时,兼顾折中各方面因素,一定要权衡刚度、变形量和寿命等之间的利弊,取得最佳主轴系统的温升控制和热变形抑制。以上只是对机床热变形研究和试验分析,希望对机床电主轴系统设计者起到一定的帮助作用。